t^2-2t+1=1/4

Simple and best practice solution for t^2-2t+1=1/4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for t^2-2t+1=1/4 equation:



t^2-2t+1=1/4
We move all terms to the left:
t^2-2t+1-(1/4)=0
We add all the numbers together, and all the variables
t^2-2t+1-(+1/4)=0
We get rid of parentheses
t^2-2t+1-1/4=0
We multiply all the terms by the denominator
t^2*4-2t*4-1+1*4=0
We add all the numbers together, and all the variables
t^2*4-2t*4+3=0
Wy multiply elements
4t^2-8t+3=0
a = 4; b = -8; c = +3;
Δ = b2-4ac
Δ = -82-4·4·3
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4}{2*4}=\frac{4}{8} =1/2 $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4}{2*4}=\frac{12}{8} =1+1/2 $

See similar equations:

| 2^x-5^x=20 | | 5r-1=8r+8 | | 46^x=4^21 | | 3^4x+5-1^2x=3 | | (x-1)/4x=2 | | 5t+7=4t–9 | | 12x+8+6=4x+9 | | 7x+10=4+8x | | 7x+10=4x+8x | | 15x+10=4x+8 | | 9x+18=4x+8 | | 4x+18=8x+2 | | 2x²+3x=54 | | 5*(x+44,5)=-5*(2x+0,5) | | -2(x+2)=-8(2x-3) | | -18x^2+24x+41=0 | | -18x^2+24×+41=0 | | 2x2+3x=54 | | 1/11=6/x | | -44=4(5x-1) | | -8x+3=-2x+21 | | n=17,29,41,53 | | 11=24÷8x | | 130+60x=80+70x | | r-8/6=-7 | | 39+3k=-7(1-7k) | | 3x^2+28=10 | | 2×(x+3)=8 | | 10a-2a=2a*4a | | 0a-2a=2a*4a | | (x+0.470588)-9.647059=3.294118+0.529412 | | 6(a+3)=4(a-2) |

Equations solver categories